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  Abstract- This correspondence deals with the development of an automated 3-D segmentation and DWT enhanced model for Brain MRI. The 
proposal model of segmentation is a model-based approach for accurate, robust, and automated tissue segmentation of brain MRI data of single 

as well as multiple magnetic resonance sequences. The main contribution of this study is that we employ an edge-based geodesic active 
Contour for the segmentation task by integrating both image edge geometry and voxel statistical homogeneity into a novel hybrid geometric–
statistical feature to regularize contour convergence and extract complex anatomical structures. We validate the accuracy of the segmentation 

results on simulated brain MRI scans of single T1-weighted and multiple T1/ T2/PD weighted sequences. When compared to a current state of- 
the-art region based level-set segmentation formulation, our white matter and gray matter segmentation resulted in significantly higher accuracy 
levels with a mean improvement in Dice similarity indexes and The proposed resolution enhancement technique uses DWT to decompose the 

input image into different sub bands. Then, the high-frequency sub band images and the input low-resolution image have been interpolated, 
followed by combining all these images to generate a new resolution-enhanced image by using inverse DWT. In order to achieve a sharper 
image, an intermediate stage for estimating the high-frequency sub bands has been proposed. The proposed technique has been tested on brain 

MRI images. The quantitative (peak signal-to-noise ratio and root mean square error) and visual results show the superiority of the proposed 
technique over the conventional and state-of-art image resolution enhancement techniques. Thus the development of the project is done using 
MATLAB simulation for results. 
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1. INTRODUCTION 

MRI Stands for Magnetic Resonance Imaging; once call 

Nuclear Magnetic Resonance Imaging. The "Nuclear" was 

dropped off about 15 years ago because of fears that people 

would think there was something radioactive involved, which 

there is not. MRI is a way of getting pictures of various parts 

of your body without the use of x-rays, unlike regular x-rays 

pictures and CAT scans. A MRI scanner consists of a large 

and very strong magnet in which the patient lies. A radio 

wave antenna is used to send signals* to the body and then 

receive signals back. These returning signals are converted 

into pictures by a computer attached to the scanner. Pictures 

of almost any part of your body can be obtained at almost any 

particular angle. These "radio wave signals" are actually a 

varying or changing magnetic field that is much weaker than 

the steady, strong magnetic field of the main magnet. 

Resolution of an image has been always an important in many 

image- and video-processing applications, such as video 

resolution issue enhancement, feature extraction and image 

resolution enhancement. Interpolation has been widely used 

in many image processing applications, such as facial 

reconstruction, multiple description coding, and image 

resolution enhancement. The interpolation-based image 

resolution enhancement has been used for a long time and 

many interpolation techniques have been developed to 

increase the quality of this task. There are three well-known 

interpolation techniques, namely, nearest neighbor, bilinear, 

and bicubic. Bicubic interpolation is more sophisticated than 

the other two techniques and produces smoother edges. the 

proposed wavelet based resolution enhancement Technique.  

   

 

A. Safety in MRI 

MRI is quite safe in the majority of patients. Certain patients 

may not be able to have an MRI. These include people who get 

nervous in small spaces (claustrophobic) and those with 

implanted medical devices such as aneurysm clips in the brain, 

heart pacemakers and cochlear (inner ear) implants. Also, 

people with pieces of metal close to or in an important organ 

(such as the eye) may not be scanned. There are a few additional 

safety considerations and some exceptions based on individual 

circumstances. Also, certain metal objects that we common have 

on our persons like watches, credit cards, hair pins, writing 

pens, etc. may be damaged by the MRI scanner or may be 

pulled away from our bodies if we go into an MRI room. Also, 

metal can sometimes cause poor pictures if it is close to the part 

being scanned. For these reasons, patients are asked to remove 

these objects before entering the MRI scanner. 

 

B.MRI Examination 

You will most likely be lying on a special table that moves into 

the centre of the magnet. Prior to going into the magnet you will 

be offered earplugs to reduce the noise that you hear. You will 

then hear some "hammering" noises while the scanner is 

preparing for scanning and taking the pictures. During this 

hammering noise, it is important not to move, as this would 

blur the pictures. You may also feel some vibration during the 

hammering noise and some slight movement of the table during 

the examination. Some patients will be given an injection in 

their arm of a substance that improves certain types of pictures. 
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This substance, called a "contrast agent", is very safe and is 

unrelated to the iodine used for CAT scans and kidney x-rays. 

 

 

C. Advantages of a MRI scan 

• MRI scanners are good at looking at the non-bony parts or 

"soft tissues" of the body. In particular, the brain, spinal cord 

and nerves are seen much more clearly with MRI than with 

regular x-rays and CAT scans. 

• Also, muscles, ligaments and tendons are seen quite well so 

that MRI scans are commonly used to look at knees and 

shoulders following injuries. 

• A MRI scanner uses no x-rays or other radiation. 

• A disadvantage of MRI is its higher cost compared to a 

regular x-ray or CAT scan. Also, CAT scans are frequently 

better at looking at the bones that MRI.  

 

II. PROPOSED SYSTEM (SEGMENTATION) 

 

A. Edge based deformable model: 

We utilize the geodesic active contour model rather than the 

region-based formulation due to its computation soundness 

and extendibility. The geodesic model delineates region 

boundaries by describing the evolution of a curve or surface C 

from an initial position C0 as finding the minima of the 

Riemannian curve distance 
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Where g is a general feature function, | I| is the gradient norm 

of intensity I, and q is the parameterization of the curve C. The 

right side of the equation describes the parameterized curve   

C(q) such that the Euclidean length of C can be represented as 

L(C) =_|C_(q)|dq =_ds, where ds = |C_(q)|dq is the Euclidean 

arc length or the Euclidean metric. Note that this geodesic 

formulation of the active contour relies on g, the speed and 

halting feature for the evolving surface in 3-D applications 

derived based on the geometric gradient feature of an image. 

Generally, g is chosen as a positive-valued function of the 

intensity gradient as in (1), where ˆI is a smoothed version of I 

and ρ = 1 or 2. Other similar monotonically decreasing 

functions, such as the sigmoid function (2) with parameters α 

(width of intensity window) and β (centre of intensity window) 

are also often utilized. The value of this feature function 

determines the propagation of the surface by searching for the 

minimal Riemannian distance is equation (2). An ideal edge 

would ultimately have a feature value of zero at all the pixel 

points along this boundary. However, propagation relying 

solely on edge feature is typically sensitive to noisy and weak 

edges that are frequently observed in medical images. 
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In particular, with the presence of complex anatomical 

structures, it is often impossible to automatically and accurately 

derive the desired geometric edge term to prevent contour 

leakage into the surrounding regions. Consequently, achieving 

accurate segmentation results with edge-based geodesic active 

contour requires either user intervention or careful adjustment 

of parameters such that the ideal boundary is minimal. This 

process is subjective and ideal parameters are often difficult to 

derive for a fully automated segmentation framework.  

 

B. Hybrid geometric–statistical feature 

We propose to transform the feature function g in the 

traditional geodesic active contour formulation into a hybrid 

feature function by incorporating geometric image features 

with voxel statistics to help automate and regularize the 

evolving contours. The minimization of the active contour is 

thus represented by  

dsIPqCIg

CL

0

,min ………3 

Where for gray-scale intensity MR images, P(I|Φ) represents 

the probability distribution function of a mixture model (3) 

from which voxel statistics are drawn, assuming that all 

voxels are identically and independently distributed and the 

image is to be described with K class labels. 

K

k
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Where P(k) represents the prior probability of the class label k 

and P (I|Φk) is the conditional density function of the kth 

class given Φ, the parameter set of the distribution. We 

employ Gaussian distributions as 
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Which require a parameter set Φ = ,μ, σ}, where μ and σ are 

the mean and standard deviation. This parameter estimation 

problem for GMM is solved by applying the EM algorithm to 

the image intensity histogram. The design of g in (2) utilizes 

both a geometric term and a statistical term. Geometrically, 

the presence of strong image gradients indicates significant 

structural content. As a result, the contour propagation speed 

slows to a halt. On the other hand, a lack of edge features 
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often indicates the presence of a homogeneous region. 

Statistically, high voxel probability indicates a high likelihood 

of the voxel belonging to the class of interest, warranting a  

 

fast contour propagation. If the voxel likelihood is reduced, 

the contour propagation is slowed down accordingly. The 

contribution of voxel likelihood to the contour propagation 

exhibits an inverse behavior to that of image gradients. Since 

both geometric and statistical features are essential to the 

contour stability, they can be combined into a Single hybrid 

feature function by modelling the aforementioned Behaviour 

as as 
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Where the first term is the traditional geometric feature as in (6) 

and the second term models the inverse behaviour of voxel 

likelihood to image gradients using an inverse sigmoid function 

with magnitudes between −1 and 1. Complementarily, these two 

components in the new hybrid feature help regularize the 

evolving contour in both the geometric and statistical sense. The 

minimization of (7) is then achieved by computing the Euler– 

Lagrange equation 
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Where κ is the Euclidean curvature, _N is the inward unit 

normal, and C0 is the initial curve or surface, and performing 

steepest gradient search (8), to deform C toward a minima 
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Where ,ψ, c, ε} are the free parameters introduced to govern 

curvature, propagation, and advection strengths, respectively. 

With the designed hybrid feature, the algorithm uses only the 

propagation term. Other terms are shown here for 

completeness. This curve evolution equation is then embedded 

in a level set function u and solved for the steady state solution 
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The numerical implementation is based on the curve evolution 

algorithm via level sets, which utilizes an upwind piecewise 

continuous approximation scheme to provide a numerically 

stable solution in the presence of singularities. As summarized 

in    Table (I), the rationale behind using this new hybrid feature 

is to enable handling of situations where 

                                         

                                          Table 1: 

 

 Effects of Regularizing Contour Propagation using Geometric 

and Statistical features 

  
The image gradient is high (small sigmoid (| I|) value) and 

The posterior probability of voxel is low, in which the voxel is 

considered to be a significant feature but lies outside of the 

desired region. We, therefore, aim to steer the contour slowly 

away from this voxel by assigning a small negative feature 

value. On the other hand, if the posterior probability is high, 

this indicates a significant feature within the desired region; 

therefore, a small positive feature value is assigned. In contrast, 

if the image gradient is low (large sigmoid(| |) value) and the 

posterior probability is low, the voxel is considered to be a weak 

gradient feature that lies outside of the desired region, 

warranting a large negative feature value such that contour can 

be quickly steered away from that region. If the posterior 

probability is high, a homogeneous area in the desired region is 

indicated, and is rewarded with a large positive feature value 

for fast contour expansion. In summary, the proposed hybrid 

feature provides an adaptive active contour propagation based 

on local information reflecting both geometry and statistical 

homogeneity. 

 

C. Segmentation of Brain MRI 

Based on the proposed active contour model, we develop a 

fully automated 3-D brain tissue segmentation algorithm for 

MRI images. We first present the proposed algorithm for T1-

weighted (T1w) MRI scans, which are most often used for 

brain tissue segmentation due to the generally high WM and 

GM contrast and the reduced effects of WM Lesions in 

patients with neurodegenerative diseases. We later extend the 

proposed method to simultaneously incorporate additional 

MR sequence data, such as T2-weighted (T2w) and PD-
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weighted (PDW) images, in addition to T1w. To segment the 

brain tissues, we first estimate the GMM parameters such that 

each mixture distribution represents one single class. Based 

on these estimated distributions, the normalized posterior 

probability of each voxel is calculated. We derive the hybrid 

geometric–statistical feature as described above by combining 

both the voxel statistics and the image gradient information. 

 

 
                                       Fig. 1         

III Wavelet–Based Image Resolution Enhancement 

There are several methods which have been used for Brain MRI 

resolution enhancement. In this paper, we have used two state-

of-art techniques for comparison purposes. The first one is WZP 

and CS, and the second one is the previously introduced CWT-

based image resolution enhancement  

 

A. CS Based Image Resolution Enhancement  

This method adopts the CS methodology in the wavelet 

Domain.  The algorithm consists of two main steps as follows: 

1) An initial approximation to the unknown high resolution 

image is generated using wavelet domain zero padding (WZP). 

2) The cycle-spinning methodology is adopted to operate the 

following tasks: 

a) A number of low resolution images are generated from the 

obtained estimated high resolution image in part (1) by spatial 

shifting, wavelet transforming, and discarding the high 

frequency sub bands. 

b) The WZP processing is applied to all those low resolution 

images yielding N high resolution images. 

c) These intermediated high resolution images are realigned and 

averaged to give the final high resolution reconstructed image. 

Shows the block diagram of the WZP- and CS-based image 

super resolution. 

 

B.CWT-Based Image Resolution Enhancement 

In this technique, dual-tree CWT (DT-CWT) is used to 

decompose an input image into different sub band images. DT-

CWT is used to decompose an input low-resolution image into 

different sub bands. Then, the high-frequency sub band images 

and the input image are interpolated, followed by combining all 

these images to generate a new high-resolution image by using 

inverse DT-CWT. The resolution enhancement is achieved by 

using directional selectivity provided by the CWT, where the 

high-frequency sub bands in six different directions contribute 

to the sharpness of the high-frequency details, such as edges. 

Details of this technique are shown in Fig. 2, where the 

enlargement factor through the resolution enhancement is α. 

 

 
 

                                             Fig. 2 

                                      

C. Proposed System (DWT-Based Resolution Enhancement) 

 As it was mentioned before, resolution is an important feature 

in brain MRI imaging, which makes the resolution enhancement 

of such images to be of vital importance as increasing the 

resolution of these images will directly affect the performance of 

the system using these images as input. The main loss of an 

image after being resolution enhanced by applying 

interpolation is on its high-frequency components, which is due 

to the smoothing caused by interpolation. Hence, in order to 

increase the quality of the enhanced image, preserving the 

edges is essential. In this paper, DWT [4] has been employed in 

order to preserve the high-frequency components of the image. 

DWT separates the image into different sub band images, 

namely, LL, LH, HL, and HH. High-frequency sub bands 

contain the high frequency component of the image. The 
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interpolation can be applied to these four sub band images. In 

the wavelet domain, the low-resolution image is obtained by 

low-pass filtering of the high-resolution image as in [2], [4], and 

[6] The lower solution image (LL sub band), without 

quantization (i.e., with double-precision pixel values) is used as 

the input for the proposed resolution enhancement process. 

Therefore, instead of using low-frequency sub band images, 

which contains less information than the original input image, 

we are using this input image through the interpolation process. 

Hence, the input low-resolution image is interpolated with the 

half of the interpolation factor, α/2, used to interpolate the high-

frequency sub bands. In order to preserve more edge 

information, i.e., obtaining a sharper enhanced image, we have 

proposed an intermediate stage in high frequency sub band 

interpolation process. The low-resolution input brain MRI 

image and the interpolated LL image with factor 2 are highly 

correlated. The difference between the LL sub band image and 

the low-resolution input image are in their high-frequency 

components. Hence, this difference image can be use in the 

intermediate process to correct the estimated high-frequency 

components. This estimation is performed by interpolating the 

high-frequency sub bands by factor 2 and then including the 

difference image (which is high-frequency components on low-

resolution input image) into the estimated high-frequency 

images, followed by another interpolation with factor α/2 in 

order to reach the required size for IDWT process. The 

intermediate process of adding the difference image, containing 

high-frequency components, generates significantly sharper and 

clearer final image. This sharpness is boosted by the fact that, 

the interpolation of isolated high-frequency components in HH, 

HL, and LH will preserve more high-frequency components 

than interpolating the low-resolution image directly.                   

                                 Table 2: 

PSNR results for different methods: 

 

 PSNR (db) 

Method\  Image Fig 3 Fig 4 

Bicubic 19.89 17.23 

Bilinear 17.30 18.07 

Wavelet zero padding 21.08 18.85 

The proposed Method 22.02 24.40 

 

Not only visual comparison but also quantitative comparisons 

are confirming the superiority of the proposed method. Peak 

signal-to-noise ratio (PSNR) and root mean square error 

(RMSE) have been implemented in order to obtain some 

quantitative results for comparison. PSNR can be obtained by 

using the following formula: 

MSE

R
LogPSNR

2

1010               …….10 

Where R is the maximum fluctuation in the input image  are 

represented by 8 bit, i.e., 8-bit grayscale representation have 

been used—radiometric resolution is 8 bit); and MSE is 

representing the MSE between the given input image Iin and the 

original image Iorg which can be obtained by the following: 
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Where M and N are the size of the images. Clearly, RMSE is the 

square root of MSE; hence it can be calculated by the following: 
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Table (II) is showing the comparison between the proposed 

method using discrete wavelet transform with bicubic 

interpolation and some state-of-art resolution enhancement 

techniques, such as BICUBIC, BILINEAR and WAVELET 

ZERO PADDING technique, and also the formerly proposed 

resolution enhancement technique by means of calculating 

PSNR. In order to show the improvement obtained by the 

proposed image resolution enhancement from information 

content point of view, the entropy of Figs. (3) And (4) have 

been calculated. Table II is showing these entropy values. As 

expected, highest level of Information content is embedded in 

the original images. The main reason of having the relatively 

high information content level of the images generated by the 

proposed method is due to the fact that the unquantized input 

LL-sub band images contain most of the information of the 

original high-resolution image. A possible unsigned 8-bit 

representation of the LL-sub band image would introduce 

irreversible quantization loss of information which is given in 

the first row of Table II. As it was mentioned in the previous 

section, the low resolution input images are obtained by 

down sampling the high-resolution images. This approach 

can be tolerated in some applications where there is no 

limitation in the number of bits for the representation of 

floating point numbers. However, in some applications, the 

down sampled images have to go through a quantization 

process where the fractions are removed to accommodate 8-

bit unsigned integer representation. In order to show the 

effect of the quantization loss embedded in 8-bit unsigned 

integer representation, the proposed resolution enhancement 

technique has been applied to quantized images, and the 
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results are reported in Tables 2. The results are confirming the 

expectation of performance drop on the proposed algorithm 

due to the loss of information contained in the floating points. 

The intermediate process of adding the difference image, 

containing high-frequency components, generates 

significantly sharper and clearer final image. This sharpness is 

boosted by the fact that, the interpolation of isolated high-

frequency components in HH, HL, and LH will preserve more 

high-frequency components than interpolating the low-

resolution image directly. 

 

 

 

 

 

RESULTS: 

 

1. Result for 3D Segmentation:  

 

 

 
Fig. 3 

 

2. Result for DWT Enhanced Model: 

 

  
Fig. 4 

Conclusion: 

We proposed a 3-D brain MR segmentation method based on 

deformable models and demonstrated accurate and stable brain 

tissue segmentation on single as well as multiple MR sequence 

scans. The main contribution of our work is that we employed a 

geodesic active contour formulation by integrating both image 

geometry and voxel statistics into a hybrid geometric–statistical 

feature; we validated our technique first by using both single 

and multiple simulated brain MRI sequence data. Improved 

segmentation accuracy and robustness were shown in results 

from the proposed hybrid approach against those using 

individual geometric or statistical features only. Further more, 

on real clinical MRI datasets, we also demonstrated improved 

accuracy over a state-of-the-art approach, the region-based 

M3DLS. Issues identified for possible future work include 

enhancing the statistical distribution estimation process by 

using complex intensity distribution estimation methods such 

as nonparametric and partial volume models, and extending 

additional segmentation classes, feature cues for segmentation 

of anomalies such as tumors. The DWT and the input image 

technique has been tested on well-known benchmark images, 

where their PSNR and RMSE and visual results show the 

superiority of the proposed technique over the conventional and 

state-of-art image resolution enhancement techniques. The 

PSNR improvement of the proposed technique is up to 7.19 dB 

compared with the standard bicubic interpolation 
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